Home

행렬식의 기하학적 의미

행렬식이 의미하는 것: 선형변환 될 때 단위 면적이 얼마만큼 늘어나는가? ※ 본 article에서는 열벡터(column vector) convention을 따릅니다. 행렬식 역행렬을 구할 때 사용되는 행렬식(determinant)는 $2\times 2$ 행렬에서 다음과 같이 정의된다. DEFINITION 1. 행렬식 행렬 $$A=\begin{pmatrix}a& b \\ c & d \end{pmatrix}$$ 에 대하여 $$det(A) = ad-bc$$ 로 정의된다. 또, 역행렬은 다음과 같이 정의된다....

Read more

Singular Value Decomposition (SVD)

What does singular value decomposition (SVD) say: For a set of orthogonal vectors, what is the orthogonal set that can still be orthogonal after linear transformation, even though their size changes? And what is the result of linear transformation? ※ Singular value decomposition (SVD) is usually defined for complex spaces, but this page sp...

Read more

특이값 분해(SVD)

특이값 분해(SVD)가 말하는 것: 직교하는 벡터 집합에 대하여, 선형 변환 후에 그 크기는 변하지만 여전히 직교할 수 있게 되는 그 직교 집합은 무엇인가? 그리고 선형 변환 후의 결과는 무엇인가? ※ 특이값분해(Singular Value Decomposition, SVD)는 보통 복소수 공간에 대하여 정의하는 것이 일반적이지만, 본 페이지에서는 실수 벡터 공간에 한정하여 작성되어 있음을 명시합니다. ※ 본 article에서는 열벡터(column vector) convention을 따릅니다. 특이값분해의 정의 특이값 분해(Singular Value Decomposition, SVD)는 임의의 $...

Read more

Principal Component Analysis(PCA)

What PCA tells you: If you need to reduce dimension of data by projecting it onto a vector, which vector is the best to project in order to maintain the original structure of data? ※ This article follows column vector convention. PCA: An Effective Method for Calculating Overall Scores Let’s consider a scenario where 100 students took...

Read more

주성분 분석(PCA)

PCA가 말하는 것: 데이터들을 정사영 시켜 차원을 낮춘다면, 어떤 벡터에 데이터들을 정사영 시켜야 원래의 데이터 구조를 제일 잘 유지할 수 있을까? ※ 본 article에서는 열벡터(column vector) convention을 따릅니다. PCA는 종합점수를 ‘잘’ 계산하는 방법 100명의 학생들이 국어 시험과 영어 시험을 봤다고 생각해보자. 영어 시험이 조금 더 어려웠고 그 결과 중 일부는 대략적으로 다음과 같았다고 하자. 국어 점수 영어 점수 100 83 70 ...

Read more

Negative Frequency

What Negative Frequency Represents: By combining vectors rotating with positive and negative frequencies, we can finally represent a real signal in the complex plane. What We See When We Get FFT Results Figure 1. Result of FFT on a 10Hz signal Let’s consider applying Fast Fourier Transform (FFT) to a 10Hz cosine function. ...

Read more

음의 주파수

음의 주파수가 의미하는 것: 양의 주파수로 회전하는 벡터와 음의 주파수로 회전하는 벡터를 합치면 비로소 복소평면에서 실수 신호 하나를 표현할 수 있다. FFT 결과를 얻게되면 우리가 보는 것 그림 1. 10Hz 신호를 FFT 했을 때 얻게 되는 결과 10Hz cosine 함수를 고속 푸리에 변환을 적용해본다고 생각해보자. 어떤 결과를 얻게 되는가? 그림 1의 하단에서 보이듯이 10Hz와 -10Hz의 두 개의 주파수에 amplitude는 각각이 절반씩 가져가는 결과를 얻게 되지 않는가? 즉, 핵심 질문은 두 가지다. 왜 음의 주파수인가? 음의 주파수의 물리적인 ...

Read more

Eigenvalue and Eigenvector

What Eigenvalues and Eigenvectors Ask: "When a vector x undergoes a linear transformation A, what vector remains parallel to the original vector x but only changes in magnitude?" "Then, how much did the magnitude change?" What Does it Mean to Perform Matrix Operations on Vectors? A matrix is an operation of linear transformation....

Read more